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2 Stephen J. Wright, Dominique Orbanx(�k), for some sequence f�kg with �k # 0, usually by applying some variantof Newton's method. Extrapolation techniques are sometimes used to �nd anappropriate initial guess after each change in �.In this paper, we examine properties of the sequence of minimizers of P (�;�)for small �, in the vicinity of x�. Previous analyses have assumed that the ac-tive constraint gradients are linearly independent at the solution|the so-calledlinear independence constraint quali�cation. By constrast, we make the weakerassumption that the Mangasarian-Fromovitz constraint quali�cation holds. Thismore general condition, which is equivalent to boundedness of the set of optimalLagrange multipliers, has been used by many authors in studying the local con-vergence analysis of nonlinear optimization and complementarity problems andthe stability of their solutions. In Section 3, we examine the case in which atleast one of the optimal multipliers satis�es the strict complementarity condition(de�ned in the next section). In this case, the path of minimizers of P (�;�) be-haves similarly to the case of linearly independent constraints: The minimizersare locally unique, the path traced by the minimizers is smooth (as a function of�) with a well-de�ned derivative, and the corresponding sequence of multiplierestimates approaches the analytic center of the multiplier set. In Section 4, weconsider the case in which the strict complementarity condition does not hold.In this case, the path traced by the set of minimizers takes on a completelydi�erent character. We prove an existence result, derive an estimate of the dis-tance between the minimizer of P (�;�k) in terms of �k, and show that any pathof minimizers that converges to x� must approach this point tangentially to thestrongly active constraints.The previous literature on the log-barrier function and properties of the min-imizers of P (�;�) is plentiful. The seminal book of Fiacco and McCormick [8]presents general results about the existence of minimizers of the barrier functionin the vicinity of x� and the convergence of the minimizer sequence to x� as�k # 0 [8, Theorem 8]. It also shows that the path of minimizers of P (�;�) is iso-lated and smooth when the active constraint gradients are linearly independentand strict complementarity holds [8, Sections 5.1, 5.2]. Adler and Monteiro [1]analyze the trajectories produced by minimizers of the log-barrier function inthe case of linear programming. The di�erences in formulation and the linearityof the problem make it di�cult to relate the results of Adler and Monteiro tothose of this paper. However, their Theorem 3.2 corresponds to our observationthat the Lagrange multiplier estimates converge to the analytic center of theoptimal multiplier set, while their Theorem 5.4 corresponds to our Theorem 3in describing the direction of approach of the trajectory of minimizers to x�.The lack of curvature in their problem gives the results a signi�cantly di�erent
avor, however, and their proof techniques depend strongly on the constancy ofthe closed subspace spanned by the active constraint gradients in the vicinity ofx�, which is not the case in (1) under our assumptions.Although their focus is on the log-barrier function, Fiacco and McCormick [8]actually consider a more general class of barrier functions, and also derive resultsfor the case in which equality constraints are represented by quadratic penaltyterms. Nesterov and Nemirovskii [17] study the general class of self-concordant



Properties of the Log-Barrier Function on Degenerate Nonlinear Programs 3barriers of which the log barrier is a particular instance. Following the resultsof Murray [16] and Lootsma [14] regarding the ill conditioning of the Hessianmatrix Pxx(�;�) along the central path, the nature of the ill conditioning in theneighborhood of the solution is examined further by M. H. Wright [23]. Thelatter paper proposes techniques for calculating approximate Newton steps forthe function P (�;�) that do not require the solution of ill-conditioned systems.In earlier work, Gould [12] proposed a method for computing accurate Newtonsteps by identifying the active indices explicitly, and forming an augmentedlinear system that remains well conditioned even when � is small. The e�ectof �nite-precision arithmetic on the calculation of Newton steps is examinedby M. H. Wright [24]. Both M. H. Wright [23,24] and S. J. Wright [26] use asubspace decomposition of the Hessian Pxx(�;�) like the one used in Section 3below, but there is an important distinction that we note later. The paper [26]addresses the issue of domain of convergence of Newton's method applied toP (�;�), which is also addressed in Theorem 1 below.The Mangasarian-Fromovitz constraint quali�cation has been used in placeof the standard assumption of linear independence of the constraint gradients inseveral recent works on nonlinear programming.Ralph andWright [20] describe apath-followingmethod for convex nonlinear programming that achieves superlin-ear local convergence under this condition. S. J. Wright [28,25] and Anitescu [2]study the local convergence of sequential quadratic programmingmethods underthis assumption.Our paper concludes with comments about two important issues: Conver-gence of the Newton/log-barrier method, in which Newton's method is usedto �nd an approximate minmizer of P (�;�k) for each �k, and relevance of ourresults to primal-dual methods, which generate iterates with both primal anddual (Lagrange multiplier) components rather than primal components alone.Detailed study of these topics is left to future work.2. Assumptions, Notation, and Basic Results2.1. AssumptionsIn this section, we specify the optimality conditions for the nonlinear program(1) and outline our assumptions on the solution x�.Assume �rst that the functions f and c are twice Lipschitz continuouslydi�erentiable in the neighborhood of interest. The Lagrangian function for (1)is L(x; �) = f(x) � �T c(x); (3)where � is the vector of Lagrange multipliers. Necessary conditions for x� to bea solution of (1) are that there exists a Lagrange multiplier vector �� such thatc(x�) � 0; �� � 0; (��)T c(x�) = 0; Lx(x�; ��) = 0: (4)



4 Stephen J. Wright, Dominique OrbanThe active constraints are the components of c for which ci(x�) = 0. Withoutloss of generality we assume these to be the �rst q components of c, so thatci(x�) = 0 i = 1; 2; : : : ; q; (5a)ci(x�) > 0; ��i = 0; i = q + 1; : : : ;m: (5b)We de�ne UR to be an orthonormal matrix of dimensions n � �q for some�q � q whose columns span the range space of the active constraint gradients,that is, Range UR = Range frci(x�) j i = 1; 2; : : : ; qg: (6)We let UN denote an orthonormalmatrix of dimensions n�(n��q) whose columnsspan the space of vectors orthogonal to rci(x�) for all i = 1; 2; : : : ; q. By thefundamental theorem of algebra, we have that�UR UN � is orthogonal: (7)We assume that theMangasarian-Fromovitz constraint quali�cation (MFCQ)holds at x�, which is that there is a vector p such thatrci(x�)Tp < 0; i = 1; 2; : : : ; q: (8)The stronger linear independence constraint quali�cation (LICQ), which as-sumes linear independence of the vectors rci(x�), i = 1; 2; : : :; q, is used byM. H. Wright [22], Fiacco and McCormick [8], and S. J. Wright [26], for in-stance. Unlike LICQ, MFCQ does not imply uniqueness of ��. We can use (3)and (4) to express the conditions on �� asrf(x�) =Pqi=1 ��irci(x�); ��i � 0; i = 1; 2; : : : ; q; (9a)��i = 0; i = q + 1; : : : ;m: (9b)We de�ne S� to be the set of multipliers satisfying these conditions at x�, thatis, S� 4= f�� j (x�; ��) satisfy (4)g: (10)Gauvin [10, Theorem 1] shows that the condition (8) is equivalent to bound-edness of the set S�. We conclude from (9) that S� is a bounded polyhedralset.The strict complementarity condition is that��i + ci(x�) > 0; i = 1; 2; : : : ;m; (11)for at least one �� 2 S�. This condition is assumed in Section 3. When it holds,we can de�ne the analytic center ��� of S� to be the vector that solvesmin�� � qXi=1 ln��i ; (12)



Properties of the Log-Barrier Function on Degenerate Nonlinear Programs 5over the set of strictly complementary multipliers, that is,rf(x�) =Pqi=1 ��irci(x�); ��i > 0; i = 1; 2; : : : ; q; (13a)��i = 0; i = q + 1; : : : ;m: (13b)Since the problem (12), (13) has a smooth, strictly convex objective and abounded feasible set, it has a unique minimizer ��� whose components 1; 2; : : : ; qare characterized by the �rst-order conditions, which is that there exists a vector� 2 IRn such that 1���i = rci(x�)T � > 0; i = 1; 2; : : : ; q: (14)(Were MFCQ not satis�ed, there would not exist a vector � such thatrci(x�)T � >0, i = 1; 2; : : : ; q, and so the problem (12), (13) would have no solution.) Notethat � is de�ned by (14) only up to a term in the null space of the active con-straint gradients. In other words, if we decompose � as� = UR�R + UN �N ; (15)where UR and UN are de�ned as in (6), (7), the formula (14) de�nes �R uniquelywhile leaving �N completely free.Finally, we assume that second-order su�cient conditions for optimality aresatis�ed, that is, yTLxx(x�; ��)y > 0; for all �� 2 S� (16)and all y 6= 0 with rci(x�)Ty = 0 for all i = 1; 2; : : : ; q:Using the matrix UN de�ned in (7), we note that this condition is equivalent toUTNLxx(x�; ��)UN positive de�nite, for all �� 2 S�. (17)Note that this condition, together with (4) and strict complementarity, impliesthat x� is a strict local solution of the problem (1); see, for example, Nocedaland Wright [18, Theorem 12.6]. Using the condition (17) together with the de-composition (15) of �, we can de�ne a particularly interesting value of �N to bethe (unique) solution of the following system:UTNLxx(x�; ���)UN �N = �UTNLxx(x�; ���)UR�R + mXi=q+1 1ci(x�)UTNrci(x�); (18)where �R is de�ned uniquely by the condition (14). The properties of the valueof �N de�ned by this formula become apparent in Section 3.



6 Stephen J. Wright, Dominique Orban2.2. NotationWe use the following notation in the rest of the paper. For related positivequantities � and �, we say � = O(�) if there is a constant M such that � � M�for all � su�ciently small.We say that � = o(�) if �=�! 0 as �! 0, � = 
(�)if � = O(�), and � = �(�) if � = O(�) and � = O(�). It follows that theexpression � = O(1) means that � � M for some constant M and all values of� in the domain of interest.We say that the function � : [0;1)! [0;1) is positively homogeneous if itis continuous, satis�es �(0) = 0 and �(� ) > 0 for � > 0, and is increasing on[0;1).For a given value of �, we de�ne a local minimizer of P (�;�) close to x�generically by x(�). (The uniqueness or at least specialness of this point is madeclear in subsequent discussions.)2.3. Basic ResultsGiven any strictly feasible point x and any positive value of the barrier parameter� in (2), we de�ne a vector of Lagrange multiplier estimates �(x; �) by�(x; �) = �C(x)�1e = � �c1(x) ; : : : ; �cm(x)�T : (19)The derivatives of the barrier function (2) arePx(x;�) = rf(x) � mXi=1 �ci(x)rci(x); (20a)Pxx(x;�) = r2f(x) + � mXi=1 � 1c2i (x)rci(x)rci(x)T � 1ci(x)r2ci(x)� : (20b)By combining (19) with (20a), we obtainrf(x) = mXi=1 �i(x; �)rci(x) + Px(x;�); (21)while for the case x = x(�), we have from (19) thatrf(x(�)) = mXi=1 �i(x(�); �)rci(x(�)):We denote by C the feasible set for (1), that is,C 4= fx j c(x) � 0g;



Properties of the Log-Barrier Function on Degenerate Nonlinear Programs 7and by strict C we denote the set of points at which the inequalities are satis�edstrictly, that is, strict C 4= fx j c(x) > 0g:It is easy to show that, under the MFCQ assumption (8), there is a neighborhoodof x� within which strict C coincides with int C.Lemma 1. Suppose that (8) is satis�ed. Then there is a neighborhood N of x�such that strict C \ N = int C \ N 6= ;;and x� lies in the closure of strict C.Proof. Choose N such that (8) continues to hold whenever x� is replaced byx, for all x 2 C\N , while the constraints q+1; : : : ;m remain inactive throughoutN . We prove the result by showing that strict C \N � int C \ N , and then theconverse.Consider some x 2 strict C \N . By continuity of c, we can choose � > 0 suchthat the open Euclidean ball of radius � around x, denoted by B�(x), satis�esB�(x) � N and c(z) > 0 for all z 2 B�(x). Hence, z 2 strict C \ N � C, andtherefore x 2 int C.Now consider a point x 2 Nnstrict C. If x =2 C, then clearly x =2 int C\N , andwe are done. Otherwise, we have cj(x) = 0 for some j 2 f1; 2; : : :; qg. Considernow the points x��p for p de�ned in (8) and � small and positive. We have bycontinuity of rcj thatcj(x� �p) = cj(x) � �rcj(x)Tp+ o(�) < 0;for all � > 0 su�ciently small. Therefore, x� �p =2 C, so that x =2 int C.The claim that strict C \ N 6= ; is proved by considering points of the formx� + �p, for � > 0 and p satisfying (8). Consideration of the same set of pointsdemonstrates that x� lies in the closure of strict C.We now show boundedness of the Lagrange multiplier estimates arising fromapproximate minimization of P (�;�).Lemma 2. Suppose that the �rst-order necessary conditions (4) and the MFCQcondition (8) hold. Then, given any �1 � 0, there exist positive quantities �2 and� such that for all barrier parameters � 2 (0; �] and all strictly feasible x thatsatisfy kPx(x;�)k � �1, we have that the multipliers �(x; �) de�ned by (19)satisfy k�(x; �)k � �2.Proof. Suppose for contradiction that there exist sequences f�kg and fxkgsuch that �k # 0 and kPx(xk;�k)k � �1, but k�(xk; �k)k " 1. By dividing (20a)(with x = xk and � = �k) by k�(xk; �k)k and de�ning��k = �(xk; �k)k�(xk; �k)k ;



8 Stephen J. Wright, Dominique Orbanwe have that0 = limk!1 k�(xk; �k)k�1Px(xk;�k) (22)= mXi=1 ��kirci(xk) +O(k�(xk; �k)k�1) (23)= mXi=1 ��kirci(x�) + O(k�(xk; �k)k�1) +O(kxk � x�k): (24)Note that ��k � 0 for each k. By taking a subsequence if necessary, we have bycompactness of the unit ball that there is a vector �� � 0 with k��k = 1 such that��k ! ��. Hence, by taking the limit of the expression above, we have thatmXi=1 ��irci(x�) = 0:By taking inner products with the vector p from (8), we have thatmXi=1 ��i(rci(x�)Tp) = 0:Since each coe�cient rci(x�)Tp is strictly positive, we have from �� � 0 that�� = 0, a contradiction. Hence no such sequences f�kg and fxkg exist, and theresult is proved.A slight extension of this result shows conditions under which the sequenceof multiplier estimates converges to the optimal multiplier set S�.Lemma 3. Suppose that the �rst-order necessary conditions (4) and the MFCQcondition (8) hold. Then, given any sequences f�kg and fxkg with xk ! x�, �k #0, and Px(xk;�k)! 0, the sequence of multiplier estimates �(xk; �k) de�ned by(19) satis�esdist S��(xk; �k) = O �

xk � x�

�+ O(�k) +O �

Px(xk;�k)

� :Proof. From Lemma 2, we have that the sequence �(xk;�k) is bounded.Therefore, we havePx(xk;�k) = rf(xk) � mXi=1 �kci(xk)rci(xk)= rf(x�)� qXi=1 �(xk; �k)rci(x�) + O(�k) + O(kxk � x�k):By comparing this expression with the de�nition (9), (10) of S�, and applyingHo�mann's lemma [13], we obtain the desired result.



Properties of the Log-Barrier Function on Degenerate Nonlinear Programs 93. Behavior of the Central Path near x� Under StrictComplementarityIn this section, we examine the properties of a path of exact minimizers x(�) ofP (x;�). We will refer to the set fx(�); � � 0g as the primal central path.Our main result, Theorem 1, shows the existence of a minimizer x(�) ofP (�;�) that lies within a distance �(�) of x�, and characterizes the domain ofconvergence of Newton's method for Px(�;�) to this minimizer. It derives a �rst-order estimate of the location of this minimizer, showing that it lies within adistance O(�2) of the point �x(�) = x� + ��; (25)where � > 0 and � is the vector that is uniquely speci�ed by the formulae (14),(15), and (18). Our second result, Theorem 2, shows that the minimizer x(�) islocally unique in a certain sense.One key to the analysis is the partitioning of IRn into two orthogonal sub-spaces, de�ned by the matrices UR and UN of (6) and (7). This decompositionwas also used in the analysis of S. J. Wright [27], but di�ers from those used byM. H. Wright in [23,24] and S. J. Wright [26], which de�ne these matrices withrespect to the active constraint matrix evaluated at the current iterate x, ratherthan at the solution x� of (1). By using the latter strategy, we avoid di�cultieswith loss of rank in the active constraint matrix at the solution, which may occurunder the MFCQ assumption of this paper, but not under the LICQ assumptionused in [23,24,26].All results in this section use the following assumption.Assumption 1. The �rst-order necessary conditions (4), the second-order suf-�cient conditions (16), the MFCQ (8), and the strict complementarity condition(11) hold at x�.Our �rst lemma concerns the length of a Newton step for P (�;�), taken froma point x that is close to �x(�).Lemma 4. Suppose that Assumption 1 holds. Given some �xed � 2 (1; 2], thereis a radius � > 0 such that for any �0 2 (0; �] the following property holds: Thereis a quantity C2 > 0 depending on �0 such that for all x withkx� (x� + ��)k = kx� �x(�)k � �0��; (26)with � 2 (0; 1], the Newton step s generated from x satis�esksk � C2��:The dependence of C2 on �0 is positively homogeneous.Proof. In the following analysis, we frequently use the order notation O(�)and �(�), keeping in mind that the constant multipliers that are hidden in theseexpressions can be made as small as we like by decreasing �0.



10 Stephen J. Wright, Dominique OrbanWe �rst examine the properties of Px(x;�) by expanding about x� and usingthe properties (26) and (5) to obtainPx(x;�)= rf(x�) + �r2f(x�)� + O(��)� qXi=1 � ��rci(x�)T � + O(��)��1 �rci(x�) + �r2ci(x�)� +O(��)�� mXi=q+1� [ci(x�) +O(�)]�1 [rci(x�) +O(�)] :Using (14) and the estimate [1+O(���1)]�1 = 1+O(���1) (which holds for all�0 su�ciently small), we obtainPx(x;�)= rf(x�) + �r2f(x�)� +O(��)� qXi=1 ���i �1 + ���iO(���1)��1 �rci(x�) + �r2ci(x�)� + O(��)�� mXi=q+1 �ci(x�)rci(x�) + O(�2)= rf(x�) � qXi=1 ���irci(x�) + �"r2f(x�)� qXi=1 ���ir2ci(x�)# �+O(���1) qXi=1 ����i �2rci(x�) � mXi=q+1 �ci(x�)rci(x�) + O(��):Hence by the de�nition (3) and the �rst-order conditions (4), we havePx(x;�) = �Lxx(x�; ���)� � mXi=q+1 �ci(x�)rci(x�) (27)+O(���1) qXi=1 ����i �2rci(x�) +O(��):By using the de�nitions (6) and (7) and the decomposition (15), we have thatUTNPx(x;�) = �UTNLxx(x�; ���)UN�N + �UTNLxx(x�; ���)UR�R�� mXi=q+1 1ci(x�)UTNrci(x�) +O(��):Hence by the de�nition (18) of �N , we have thatUTNPx(x;�) = O(��): (28)



Properties of the Log-Barrier Function on Degenerate Nonlinear Programs 11Meanwhile, it follows immediately from (27) and the fact that � 2 (1; 2] thatUTRPx(x;�) = O(���1): (29)We now examine the Hessian Pxx(x;�) for x satisfying the following bound:kx� (x� + ��)k � ��� : (30)By expanding in a similar fashion as for Px(�;�), we obtainPxx(x;�)= r2f(x�) +O(�) � qXi=1 �rci(x�)T � + O(���1)��1 �r2ci(x�) + O(�)�+ qXi=1 ��1 �rci(x�)T � + O(���1)��2 �rci(x�)rci(x�)T+v1irci(x�)T +rci(x�)vT2i +O(�2)� ;where v1i and v2i, i = 1; 2; : : :; q are vectors that satisfy the estimatesv1i = O(�); v2i = O(�); i = 1; 2; : : : ; q:In expanding the last term, we have used the following relation, which holds forany two vectors a and b:aaT = bbT + (a� b)bT + b(a� b)T + (a� b)(a� b)T :By using (14), we have thatPxx(x;�) (31)= r2f(x�) � qXi=1 ���ir2ci(x�) + ��1 qXi=1(���i )2rci(x�)rci(x�)T+O(���2) qXi=1rci(x�)rci(x�)T + ��1 qXi=1 �v̂1irci(x�)T +rci(x�)v̂T2i�+ O(�);where v̂1i and v̂2i are both of size O(�) for all i = 1; 2; : : :; q. We now examine theeigenstructure of this Hessian matrix. Using G to denote the active constraintgradients, that is, G 4= [rc1(x�);rc2(x�); : : : ;rcq(x�)] ;with rank G = �q � q, we have a �q � q matrix R with full row rank such thatG = URR:



12 Stephen J. Wright, Dominique OrbanFocusing on the O(��1) term in (31), we have thatPxx(x;�) = ��1 qXi=1(���i )2rci(x�)rci(x�)T + O(���2)= ��1GDGT +O(���2)= ��1UR(RDRT )UTR + O(���2); (32)where D is the diagonal matrix whose diagonal elements are (���i )2, i = 1; 2; : : :; q,all of which are positive. DenotingHRR = ��1RDRT ;we have by the properties of R and D that HRR is a symmetric positive de�nitematrix, all of whose eigenvalues are of size �(��1). In particular, we havekHRRk = O(��1); 

H�1RR

 = O(�): (33)Therefore from (32), we have thatUTRPxx(x;�)UR = ��1HRR +O(���2): (34)We have by the de�nition of UN together with (31) thatHNN 4= UTNPxx(x;�)UN= UTN "r2f(x�)� qXi=1 ���ir2ci(x�)#UN + O(�)= UTNLxx(x�; ���)UN + O(�); (35)and by the second-order su�cient condition, we have that this matrix is positive-de�nite with all eigenvalues of size �(1), for all � su�ciently small.For the cross-term, we have thatHNR 4= UTNPxx(x;�)UR = UTNLxx(x�; ���)UR + ��1UTN V̂1GTUR +O(�);where V̂1 = [v̂11; : : : ; v̂1q] = O(�). It follows from this estimate thatHTRN = HNR = O(1): (36)From a standard result (see, for example, Wright [26, Lemma 2]), we havethat �HRR HRNHTRN HNN ��1 = �J11 J12JT12 J22 � ; (37)



Properties of the Log-Barrier Function on Degenerate Nonlinear Programs 13where J22 = �HNN �HTRNH�1RRHRN ��1 = (HNN + O(�))�1= O(1); (38a)J11 = H�1RR +H�1RRHRN �HNN �HTRNH�1RRHRN��1HTRNH�1RR= O(�); (38b)J12 = �H�1RRHRN �HNN �HTRNH�1RRHRN��1= O(�): (38c)For the Newton step from x, we haves = �Pxx(x;�)�1Px(x;�) = � �UR UN � �HRR HRNHTRN HNN ��1 �UTRPx(x;�)UTNPx(x;�)� ;so it follows from (28), (29), and (38) thatUTR s = �J11UTRPx(x;�)� J12UTNPx(x;�) = O(�)O(���1) + O(�)O(��) = O(��);UTN s = �JT12UTRPx(x;�)� J22UTNPx(x;�) = O(�)O(���1) + O(1)O(��) = O(��):We conclude that s = O(��).We now restore the explicit dependence of the constant in the O(�) term onthe radius �0, and summarize our results by writingkx� �x(�)k � �0�� ) ksk � C2��: (39)where C2 = C2(�0) is a positive homogeneous function of �0.The next lemma concerns the �rst two Newton steps for P (�;�) taken froma point x close to �x(�). It derives a bound on the second step in terms of the�rst.Lemma 5. Suppose that Assumption 1 holds. Given � 2 (1; 2], there is a radius� > 0 such that for any �1 2 (0; �] the following property holds: There is aquantity C4 > 0 depending on �1 such that for all x withk~x� (x� + ��)k = k~x� �x(�)k � �1��; (40)with � 2 (0; 1], we have k~s+k � C4��1k~sk2:where ~s and ~s+ are the �rst and second Newton steps, respectively, from thepoint ~x. The dependence of C4 on �1 is positively homogeneous.Proof. We have from Lemma 4 thatk~sk � C2(�1)�� ; (41)where we indicate the dependence of C2 on �1 explicitly.We now seek a bound onk~s+k. As in the proof of Lemma 4, we use order notation, with the understanding



14 Stephen J. Wright, Dominique Orbanthat the constant represented by the O(�) term can be made arbitrarily small bydecreasing �1 appropriately.By Taylor's theorem, we havePx(~x+ ~s;�)= Px(~x;�) + Pxx(~x;�)~s+ Z 10 [Pxx(~x+ �~s;�)� Pxx(~x;�)] ~sd�;= Z 10 [Pxx(~x+ �~s;�)� Pxx(~x;�)] ~sd�: (42)Techniques similar to those in Wright [26, (39)] can be used to analyze thisintegrand. We obtainZ 10 [Pxx(~x+ �~s;�)� Pxx(~x;�)] ~sd� = qXi=1O(��2k~sk2)rci(x�) + O(��1k~sk2);so we conclude from (6), (7), and (42), thatUTRPx(~x+ ~s;�) = O(��2k~sk2); (43a)UTNPx(~x+ ~s;�) = O(��1k~sk2): (43b)By choosing �1 small enough that�1 + 2C2(�1) � �; (44)we ensure that ~x + ~s lies inside a neighborhood of the form (26), within whichthe bounds (38) on the component blocks of the inverse Hessian Pxx(~x + ~s;�)apply, becausek~x+ ~s � �x(�)k � k~x� �x(�)k + k~sk � �1�� + C2(�1)�� � ��� :(Note that the bounds in question did not depend on the speci�c choice of �0 inLemma4, but only on the upper bound �.) Hence, by using these bounds togetherwith (43) in the same fashion as in the argument that led to the estimate (39),we obtain that there is a positive homogeneous function C4(�) such thatk~x� �x(�)k � �1�� ) k~s+k � C4(�1)��1k~sk2: (45)We now prove our main result, which shows the existence of a minimizer x(�)of P (�;�) close to �x(�), and moreover proves convergence of Newton's methodto this point when started from a neighborhood of �x(�).Theorem 1. Suppose that Assumption 1 holds. Given � 2 (1; 2], there are val-ues �2 > 0 and �� > 0 such that for all x0 withkx0 � (x� + ��)k = kx0 � �x(�)k � �2�� ; (46)



Properties of the Log-Barrier Function on Degenerate Nonlinear Programs 15with � 2 (0; ��], the sequence of (full) Newton steps generated from x0 is wellde�ned and converges to a strict local minimizer x(�) of P (�;�). Moreover, wehave that kx(�)� �x(�)k = O(�2) (47)and that x(�) is the only local minimizer of P (�;�) in the neighborhood de�nedby (46).Proof. Let us denote the �rst Newton step by s0, the second by s1, and soon. Given � de�ned as in Lemma 4, choose �1 to satisfy (44). Now choose �2such that �2 + 2C2(�2) � �1: (48)Finally, choose �� 2 (0; 1] such thatC4(�1)C2(�1)����1 � 1=2: (49)Given x0 satisfying (46), we set ~x = x0 and note that, because of (48), thecondition k~x � �x(�)k � �1�� is certainly satis�ed. By identifying s0 with ~s inLemma 5, we obtain ks0k � C2(�1)�� ; (50)while from (45) and the identi�cation ~s+ = s1, we haveks1k � C4(�1)��1ks0k2: (51)By combining (50) and (51) and using (49) we have thatks1k � C4(�1)C2(�1)���1ks0k � (1=2)ks1k: (52)We now repeat the argument with a new value of ~x, namely, ~x = x0 + s0.Since from (39) and (48), we havek~x� �x(�)k � kx0 � �x(�)k+ ks0k � [�0 + C2(�0)]�� � �1��;it follows from (45) and the identi�cation ~s+ = s2, ~s = s1 thatks2k � C4(�1)��1ks1k2: (53)Hence, from (52), (50), and (49), we have for � � �� thatks2k � �C4(�1)��1ks1k� ks1k (54)� (1=2) �C4(�1)��1ks0k� ks1k � �C4(�1)���1� ks1k � (1=4)ks1k:We continue in this fashion, setting ~x = x0+s0+s1, ~x = x0+s0+s1+s2, andso on, to deduce that the Newton sequence is a Cauchy sequence and thereforeis convergent to some point x(�), wherekx0 � x(�)k � 




 1Xi=0 si




 � 1Xi=0 ksik � 1Xi=0 2�iks0k = 2ks0k � 2C2(�1)�� : (55)



16 Stephen J. Wright, Dominique OrbanBecause of (44), we �nd that x(�) lies within the region de�ned by (30), so thatits Hessian Pxx(x(�);�) is positive de�nite. Moreover, it follows from (43) bysubstituting successive values of ~x and ~s that Px(x(�);�) = 0. Hence, x(�) is astrict local minimizer of P (�;�). Since Pxx(�;�) remains positive de�nite for allx in the region de�ned by (30), we have in fact that x(�) is the unique minimizerof P (�;�) in this neighborhood. Hence, because of (44) and (48), it is a fortiorithe unique minimizer in the neighborhood (46), verifying the �nal statement ofthe theorem.The Q-quadratic rate of convergence of the Newton sequence to x(�) withrate constant of size O(��1) follows immediately from (45).To verify the estimate (47), we simply consider the Newton sequence thatstarts at x = �x(�). This starting point certainly satis�es (46) for � = 2 (indeed,the left-hand side in this inequality is zero), so by applying our analysis withthis value of �, we obtain the result from (55).We now prove that the minimizers x(�) described in Theorem 1 are uniquein a certain sense.Theorem 2. Suppose that Assumption 1 holds. For all f�kg and fzkg with theproperties that �k # 0; zk ! x�; zk a local min of P (�;�k); (56)we have that �k=ci(zk)! ���i for all i = 1; 2; : : :;m, and in fact that zk = x(�k)for all k su�ciently large.Proof. We �rst show that rci(x�)T (zk�x�) = o(kzk�x�k) cannot occur forany active index i = 1; 2; : : : ; q.We know from Lemma 3 that dist S��(zk; �k) ! 0, so that all limit pointsof f�(zk; �k)g lie in S�, by closedness. Let �̂ be any limit point of this sequence,and suppose WLOG that �(zk; �k)! �̂: (57)By taking a further subsequence, we can assume thatzk � x�kzk � x�k ! d; (58)for some d with kdk = 1, by compactness of the unit ball. Since ci(zk) � 0 andci(x�) = 0 for each i = 1; 2; : : : ; q, we have thatrci(x�)Td � 0; i = 1; 2; : : : ; q: (59)By the de�nition (19) of �(z; �), we have by expanding ci(zk) that�kci(zk) = �krci(x�)Tdkzk � x�k+ o(kzk � x�k)! �̂i; for all i = 1; 2; : : : ; q: (60)Let Z denote the following set of indices:Z 4= fj = 1; 2; : : : ; q jrcj(x�)Td = 0g; (61)



Properties of the Log-Barrier Function on Degenerate Nonlinear Programs 17and let Zc denote f1; 2; : : :; qgnZ. Our aim is to show that Z = ;. Suppose forcontradiction that Z has at least one element. By taking an index i 2 Z in (60),we have immediately that �k = o(kzk � x�k): (62)Hence, for the indices i 2 Zc, those for which rci(x�)Td > 0, we have againfrom (60) that �̂i = 0. Therefore from the KKT condition (9a), we have thatrf(x�) = qXi=1 �̂irci(x�) =Xi2Z �̂irci(x�): (63)Now by the strict complementarity assumption (11), there is a multiplier �� suchthat rf(x�) = qXi=1 ��irci(x�); ��i > 0; for all i = 1; 2; : : : ; q: (64)By taking di�erences in (63) and (64), we have thatXi2Z(��i � �̂i)rci(x�) + Xi2Zc ��irci(x�) = 0: (65)By taking the inner product with d, and using the de�nition of Z, we haveXi2Zc ��irci(x�)Td = 0: (66)Since ��i > 0 and since rci(z�)Td � 0 by (59), we must have rci(z�)Td = 0,so that Zc must be empty. We conclude that, for the particular subsequencesatisfying (57) and (58), either Z = ; or Z = f1; 2; : : : ; qg. We now eliminatethe latter case by supposing for contradiction that it happens. Since zk is a localminimizer of P (�;�k), we have from (20a) and (3) thatPx(zk;�k) = Lx(zk; �(zk; �k)) = 0: (67)Since �̂ 2 S�, we have that Lx(x�; �̂) = 0:By taking di�erences of these two expressions, we have that0 = Lx(zk; �(zk; �k))� Lx(x�; �̂)= Lx(zk; �(zk; �k))� Lx(zk; �̂) + Lx(zk; �̂) �Lx(x�; �̂)= � qXi=1 h�i(zk; �k) � �̂iirci(zk)� mXi=q+1�i(zk; �k)rci(zk)+Lxx(x�; �̂)(zk � x�) + o(kzk � x�k)= qXi=1 o(1)rci(x�) + o(kzk � x�k) + Lxx(x�; �̂)(zk � x�) +O(�k); (68)



18 Stephen J. Wright, Dominique Orbanwhere we have used the estimate �i(zk; �k) = O(�k) for i = q+1; : : : ;m to derivethe �nal equality. Taking the inner product with d, and noting that rci(x�)Td =0 for all i = 1; 2; : : : ; q, we have that0 = dTLxx(x�; �̂)(zk � x�) +O(�k) + o(kzk � x�k):If we divide by kzk � x�k, take the limit, and use (62), we obtain0 = dTLxx(x�; �̂)d:However, the second-order conditions (16) require that dTLxx(x�; �̂)d > 0 forall d 6= 0 with rci(x�)Td = 0, giving a contradiction. We conclude that Z = ;for the direction d de�ned by the subsequence we have been considering|theone that satis�es (57) and (58). However, by compactness of S� and the unitball, we can assign every index k to a subsequence that satis�es conditions ofthe type (57) and (58). Hence, we conclude that rci(x�)T d > 0 for all possibleapproach directions d, or in other words that rci(x�)T (zk � x�) = o(kzk � x�k)cannot occur for any active index i = 1; 2; : : : ; q. Therefore, rci(x�)Td > 0 forall i = 1; 2; : : : ; q.By taking a further subsequence in (60), we can assume thatkzk � x�k�k ! 
: (69)By (60) and �niteness of �̂, we have 
 > 0. We also have 
 <1, since otherwisethe limit in (60) would be �̂ = 0, so that ��� 2 S� for all � � 0 and all strictlycomplementary �� 2 S�, contradicting boundedness of S�. Hence, from (60), wehave 1rci(x�)T (
d) = �̂i; i = 1; 2; : : : ; q: (70)It follows from the optimality conditions for the analytic center problem (12),(13) and the uniqueness of the solution ��� of this problem that�̂ = ���: (71)Since all limit points of �(zk; �k) have the property (71), we conclude that�(zk; �k)! ���.The remainder of the proof establishes zk = x(�k) by showing that if thesetwo local minimizers of P (�;�k) are distinct, the Hessian Pxx(�;�) is positivede�nite at all points along the straight line that connects them.Since by (70) and (71), the projection of (
d) onto the subspaceRange frci(x�) j i = 1; 2; : : : ; qgis uniquely de�ned, we have that, for the entire sequence fzkg satisfying (56),limk rci(x�)T zk � x�kzk � x�k = rci(x�)Td = rci(x�)T �k�k ; i = 1; 2; : : : ; q; (72)



Properties of the Log-Barrier Function on Degenerate Nonlinear Programs 19and 
 = k�k; (73)where � is the vector de�ned in (14), (15), and (18). It follows from these obser-vations together with (14), (25), (69), and Theorem 1 thatrci(x�)T (zk � x�) = 
�1kzk � x�krci(x�)T � + o(�k)= �krci(x�)T � + o(�k)= rci(x�)T (�x(�k) � x�) + o(�k)= rci(x�)T (x(�k) � x�) + o(�k); i = 1; 2; : : : ; q;and therefore rci(x�)T �x(�k)� zk� = o(�k); i = 1; 2; : : : ; q:Hence, we have for all � 2 [0; 1] thatci �zk + �(x(�k) � zk)�= ci(zk) + �rci(zk)T (x(�k) � zk) +O(�2k)= ��k=���i + o(�k)�+ �rci(x�)T (x(�k) � zk) + O(�2k)= �k=���i + o(�k); i = 1; 2; : : : ; q: (74)We now consider the Hessian Pxx(�;�k) evaluated at the points zk+�(x(�k)�zk), � 2 [0; 1]. By using analysis very similar to that in the proof of Lemma 4,together with the observation (74), we can show that this matrix is positivede�nite for all � 2 [0; 1], for all k su�ciently large. By Taylor's theorem, wehave 0 = �zk � x(�k)�T �Px(zk;�k) � Px(x(�k);�k)�= Z 10 �zk � x(�k)�T Pxx �zk + �(x(�k)� zk)� �zk � x(�k)� d�:Observe that the right-hand side of this expression is positive whenever zk 6=x(�k) for all k su�ciently large. We conclude that zk = x(�k) for all k su�cientlylarge, as required.We now demonstrate the di�erentiability of the path x(�) discussed in The-orems 1 and 2. The proof again uses the decomposition of the Hessian Pxx(x;�)that was �rst derived in the proof of Lemma 4.Theorem 3. Suppose that Assumption 1 holds. Then for the minimizers x(�)de�ned in Theorem 1, there is a threshold �� such x(�) exists and is a continuouslydi�erentiable function of � for all � 2 (0; ��], and we have thatlim�#0 _x(�) = �: (75)



20 Stephen J. Wright, Dominique OrbanProof. Choose � = 2 in Theorem 1, and let �� and C0 be de�ned accordingly.We now have existence of x(�) for all � 2 (0; ��], and the estimate (47) holds.Each such x(�) solves the equationPx(x(�);�) = 0: (76)Pxx is nonsingular and continuous at each � 2 (0; ��], by (37), (38) and thediscussion preceding these expressions. Hence, we can apply the implicit functiontheorem (see, for example, Ortega and Rheinboldt [19, p. 128]) to conclude thatx(�) is di�erentiable at � and that the derivative _x(�) satis�es the equationPxx(x(�); �) _x(�) � r(�) = 0; (77)where r(�) 4= mXi=1 1ci(x(�))rci(x(�)): (78)We now show (75) by showing that _x(�) = � +u(�), where u(�) = O(�) andso, in particular, u(�) ! 0 as � # 0. By substituting into (77), we have that usatis�es the expressionPxx(x(�); �)u = r(�) � Pxx(x(�); �)�: (79)We can substitute x(�) for x in the analysis of Pxx(�;�) that leads to (37), (38),since x(�) certainly lies in the neighborhood (46) within which this estimate isvalid. Hence, by applying (37) to (79), we have that�UTRuUTNu� = � J11 J12JT12 J22 ��UTRUTN � [r(�)� Pxx(x(�); �)�] : (80)Hence, from the estimates (38), we have thatu(�) = O(�) 

UTR [r(�)� Pxx(x(�); �)�]

+O(1) 

UTN [r(�)� Pxx(x(�); �)�]

 :Therefore, our estimate u(�) = O(�) will follow if we can show thatUTR [r(�)� Pxx(x(�); �)�] = O(1); (81a)UTN [r(�)� Pxx(x(�); �)�] = O(�): (81b)By substituting directly from (20b) and (78), we have thatPxx(x(�);�)� � r(�) = "r2f(x(�)) + mXi=1 �ci(x(�))r2ci(x(�))# � (82)+ qXi=1 1ci(x(�)) ��rci(x(�))T �ci(x(�)) � 1�rci(x(�))+ mXi=q+1 1ci(x(�)) ��rci(x(�))T �ci(x(�)) � 1�rci(x(�)):



Properties of the Log-Barrier Function on Degenerate Nonlinear Programs 21By using (14) together with the estimates (46) (with � = 2) and (47), we obtainthat ci(x(�)) = rci(x�)T (x(�)� x�) +O(�2)= �rci(x�)T � + O(�2) = ����i + O(�2); i = 1; 2; : : : ; q: (83)Hence, Lipschitz continuity of r2f(�) and r2ci(�), i = 1; 2; : : :;m implies thatr2f(x(�))+ mXi=1 �ci(x(�))r2ci(x(�)) = r2f(x�)+ mXi=1 ���ir2ci(x�)+O(�): (84)For the second term on the right-hand side of (82), we use (83) again to obtain�rci(x(�))T �ci(x(�)) � 1 = �=���i +O(�2)�=���i +O(�2) � 1 = O(�); i = 1; 2; : : : ; q: (85)Hence, by using (83) again together with the property ���i > 0, i = 1; 2; : : : ; q, wehave that qXi=1 1ci(x(�)) ��rci(x(�))T �ci(x(�)) � 1�rci(x(�))= qXi=1 O(�)ci(x(�))rci(x(�)) = qXi=1 O(1)rci(x�) + O(�): (86)For the third term on the right-hand side of (82), we have that, since ci(x(�))is bounded away from zero for � su�ciently small,mXi=q+1 1ci(x(�)) ��rci(x(�))T �ci(x(�)) � 1�rci(x(�)) = � mXi=q+1 1ci(x�)rci(x�) + O(�):(87)By substituting (84), (86), (87) into (82), and taking the inner product withUTR , we have that (81a) is satis�ed. When we take the inner product with UTN ,the terms involving rci(x�), i = 1; 2; : : :; q in (86) are eliminated, and we areleft withUTN [Pxx(x(�);�)� � r(�)] = UTNLxx(x�; ���)� � mXi=q+1 1ci(x�)UTNrci(x�) + O(�):(88)By comparing this expression with (18), we conclude that (81b) is satis�ed,completing the proof.The relation (75) together with (14) shows that the primal central pathreaches x� nontangentially to the active constraints, since the strict comple-mentarity is certainly satis�ed at ���, but it is tangential to the linear pathf�x(�) j� 2 (0; �]g at x�. It also shows that p = �� = � _x(0) satis�es the MFCQ(8).



22 Stephen J. Wright, Dominique OrbanThe proof of (75) is much simpler in the case of linearly independent activeconstraints. When this condition holds, Fiacco and McCormick [8, Section 5.2]replace (77) by an \augmented" linear system whose unknowns are both _x(�)and _�(�) and whose coe�cient matrix approaches a nonsingular limit as � # 0.The result follows by setting � = 0 and calculating the solution of this systemdirectly. M. H. Wright performs a similar analysis [22, Section 3] and observesthe nontangentiality of the path to the active constraints.4. Relaxing the Strict Complementarity ConditionIn this section, we discuss the properties of the sequence of minimizers of P (�;�k)when strict complementarity (11) does not hold. That is, we have for some activeconstraint index i = 1; 2; : : :; q that ��i = 0 for all �� 2 S�. Lemmas 1, 2, and3 continue to hold when (11) is not satis�ed. However, the problem (12), (13)that de�nes the analytic center is not even feasible, so the path of minimizers ofP (�;�) with the particular form described in Section 3 is not de�ned.Our main results are as follows. Under a suitably modi�ed second-order suf-�cient condition, we can show existence of a local minimizer of P (�;�k) in thevicinity of x�, for all �k su�ciently small, using a simple modi�cation of resultsfrom [22]. We show that the direction of approach of the sequence of minimizersto x� is tangential to the strongly active constraints (those for which ��i > 0 forsome �� 2 S�). Finally, we show that�k = �(kzk � x�k2);where zk is the local minimizer of P (�;�k). This contrasts with the strictlycomplementary case, in which the exponent 2 does not appear. We are notable to prove local uniqueness of the minimizer (as was seen for the strictlycomplementary case in Theorem 2), nor are we able to obtain the semi-explicitcharacterization of the minimizer seen in Theorem 1.We suppose that the \non-strictly complementary" indices are �q + 1; : : : ; q,that is, ��i = 0; for all �� 2 S�, all i = �q + 1; : : : ; q. (89)We modify the second-order conditions (16) as follows:dTLxx(x�; ��)d > 0; for all �� 2 S� (90)and all d 6= 0 with rci(x�)Td = 0 for all i = 1; 2; : : : ; �qand rci(x�)T d � 0 for all i = �q + 1; : : : ; q:Under these conditions, x� remains a strict local solution of (1).We can obtain some insight into this case by considering the following simpleexample: min 12 �x21 + x22� subject to x1 � 1, x2 � 0. (91)



Properties of the Log-Barrier Function on Degenerate Nonlinear Programs 23The solution is x� = (1; 0)T , with both constraints active and unique optimalLagrange multipliers ��1 = 1, ��2 = 0. It is easy to verify that the minimizer ofP (�;�) in this case isx(�) = �1 +p1 + 4�2 ;p��T � (1 + �;p�)T :The path of minimizers is dramatically di�erent from the one that would beobtained by omitting the weakly active constraint x2 � 0 from the problem,which would be x(�) = �1 +p1 + 4�2 ; 0�T � (1 + �; 0)T :Note that the path becomes tangential to the strongly active constraint x1 � 1and that the distance from x(�) to the solution x� is O(�1=2) rather than O(�),as in the case of strict complementarity.All results in this section use the following assumption.Assumption 2. The �rst-order necessary conditions (4), the second-order suf-�cient conditions (90), and the MFCQ (8) hold at x�. The strict complementaritycondition fails to hold, that is, �q < q in (89).We start with a result on the existence of a sequence of minimizers ofthe barrier function that approaches x�. It is a consequence of Theorem 7 inM. H. Wright [22]. Under our assumptions, x� is a strict local minimizer of theproblem (1), and so the set M in the cited result is the singleton fx�g.Theorem 4. Suppose that Assumption 2 holds. Let f�kg be any sequence ofpositive numbers such that �k # 0. Then(i) there exists a neighborhood N of x� such that for all k su�ciently large,P (�;�k) has at least one unconstrained minimizer in strict C \ N . More-over, every sequence of global minimizers f�xkg of P (�;�k) in strict C \ cl Nconverges to x�.(ii) limk!1 f(�xk) = limk!1P (�xk;�k) = f(x�).The next three results concern the behavior of any sequences f�kg and fzkgwith the following properties:�k # 0; zk ! x�; zk a local min of P (�;�k): (92)The sequence of global minimizers f�xkg described in Theorem 4 is one possiblechoice for fzkg.Theorem 5. Suppose that Assumption 2 holds. Let f�kg and fzkg be sequenceswith the properties (92). Then we have that�k = O(kzk � x�k2): (93)



24 Stephen J. Wright, Dominique OrbanProof. From Lemma 3, we have that�i(zk; �k) � dist S��(zk;�k) = O �kzk � x�k+ �k� ; for all i = �q + 1; : : : ; q.By substituting from (19), and using the estimate ci(zk) = O �kzk � x�k�, wehave that�k � ci(zk)O �kzk � x�k+ �k� � K1 �kzk � x�k2 + �kkzk � x�k� ;for some K1 > 0 and all k su�ciently large. Therefore, we have�1�K1kzk � x�k��k � K1kzk � x�k2;so by taking k large enough that kzk � x�k � 1=(2K1), we have the result.We now show that the approach of the minimizer sequence is tangential tothe strongly active constraints.Lemma 6. Suppose that Assumption 2 holds. Let f�kg and fzkg be sequencessuch that�k # 0; zk ! x�; zk a local min of P (�;�k); zk � x�kzk � x�k ! d; (94)for some vector d 2 IRn with kdk = 1.rci(x�)Td = 0; for all i = 1; 2; : : : ; �q. (95)Proof. Given the sequences f�kg and fzkg satisfying (94), let �̂ be a limitpoint in S� of the sequence f�(zk; �k)g. We know that �̂i = 0 for all i = �q +1; : : : ; q. Given our de�nition of �q and convexity of the set S�, we can choose amultiplier �� 2 S� such that��i > 0; for all i = 1; 2; : : : ; �q.We cannot have �̂ = 0, since it would then follow from (9a) that rf(x�) = 0and therefore that ��� 2 S� for all � � 0. Hence S� would be unbounded, con-tradicting (8) which, as we noted earlier, ensures boundedness of S�. Therefore�̂i > 0 for at least one i = 1; 2; : : : ; �q.Let K be a subsequence of indices such that limk2K �(zk; �k) = �̂. For theindex i such that �̂i > 0, we have�kci(zk) � �̂i=2; for all k 2 K su�ciently large.Since ci(zk)=kzk � x�k = rci(x�)Td+ o(1), we have by dividing numerator anddenominator by kzk � x�k that�k=kzk � x�krci(x�)Td+ o(1) � �̂i=2; for all k 2 K su�ciently large.



Properties of the Log-Barrier Function on Degenerate Nonlinear Programs 25If rci(x�)Td > 0, we would have from (93) that the left-hand side in this expres-sion approaches zero, a contradiction. Therefore, we have that rci(x�)Td = 0for all indices i such that �̂i > 0.Since �� 2 S� and �̂ 2 S�, we have that�qXi=1 ��irci(x�) = �qXi=1 �̂irci(x�) = X̂�i>0 �̂irci(x�):By rearranging this expression, we obtainX̂�i>0(��i � �̂i)rci(x�) = � X̂�i=0��irci(x�):By taking the inner product of both sides with d, and using that dTrci(x�) = 0for all i with �̂i > 0, we obtain thatX̂�i=0��i dTrci(x�) = 0:Since ��i > 0 for all i in this sum, and since feasibility dictates that rci(x�)Td �0, we conclude that rci(x�)T d = 0 for the indices i = 1; 2; : : :; �q with �̂i = 0 aswell. Hence, we have proved (95).We now show that there is a lower bound on �k in terms of kzk �x�k2 to gowith the upper bound in (93).Theorem 6. Suppose that Assumption 2 holds. Let f�kg and fzkg be sequenceswith the properties (92). Then we have thatkzk � x�k2 = O(�k): (96)Proof. Suppose that d is a limiting direction and �̂ is a limiting multiplier ofthe sequence (92), that is, for some subsequence K, we havezk � x�kzk � x�k !K d; �(zk; �k) !K �̂ 2 S�: (97)Since Lx(zk; �(zk; �k)) = 0; Lx(x�; �̂) = 0;we have by expanding as in (68) that0 = Lx(zk; �(zk; �k)) �Lx(x�; �̂)= Lx(zk; �(zk; �k)) �Lx(zk; �̂) + Lx(zk; �̂) �Lx(x�; �̂)= � �qXi=1 h�i(zk; �k) � �̂iirci(zk)� qXi=�q+1�i(zk; �k)rci(zk)�mXi=q+1�i(zk; �k)rci(zk) + Lxx(x�; �̂)(zk � x�) + o(kzk � x�k)



26 Stephen J. Wright, Dominique Orban= �qXi=1 o(1)rci(x�) � qXi=�q+1�i(zk; �k)rci(x�) (98)+Lxx(x�; �̂)(zk � x�) + o(kzk � x�k) +O(�k);where we have used the following estimates:�i(zk; �k) = O(�k); i = q + 1; : : : ;m; (99a)�i(zk; �k) = O(kzk � x�k); i = �q + 1; : : : ; q; (99b)�i(zk; �k)� �̂i = O(kzk � x�k); i = 1; : : : ; �q; (99c)rci(zk) = rci(x�) + O(kzk � x�k); i = 1; 2; : : : ;m; (99d)zk � x� = dkzk � x�k+ o(kzk � x�k): (99e)By taking inner products with d=kzk � x�k, and using (95) and (93), we havethat dTLxx(z�; �̂)d = qXi=�q+1 �i(zk; �k)kzk � x�krci(x�)Td+ o(1): (100)For i = �q+1; : : : ; q, we have that rci(x�)Td � 0, since otherwise we would haveci(zk) < 0 for k su�ciently large, contradicting feasibility. Hence, using (95)again, we certainly have thatrci(x�)Td = 0; all i with �̂i > 0,rci(x�)Td � 0; all i with �̂i = 0,so from (90) we have that dTLxx(x�; �̂)d > 0. Hence, the right-hand side in(100) must be bounded away from zero. Since each term in the summation isnonnegative, we must have for at least one i = �q + 1; : : : ; q that rci(x�)Td > 0.For at least one such i, the corresponding coe�cient in (100) must be positivein the limit, that is, there is a 
 > 0 such that�i(zk; �k)kzk � x�k � 
; all k, and at least one i with rci(x�)Td > 0.By expanding this coe�cient, we obtain�i(zk; �k)kzk � x�k = �kci(zk)kzk � x�k= �krci(x�)Tdkzk � x�k2 + o(kzk � x�k2)� 
:Therefore, we have�k � 
rci(x�)Tdkzk � x�k2 + o(kzk � x�k2) � (
=2)rci(x�)Tdkzk � x�k2;



Properties of the Log-Barrier Function on Degenerate Nonlinear Programs 27for all k su�ciently large. Therefore, by takingK2 = maxi j rci(x�)T d>0 2
rci(x�)T d;we have that kzk � x�k2 � K2�k for all k su�ciently large.Hence, we have proved the result for the subsequence K with the properties(97). Since each index k can be assigned to a subsequence of this type, weconclude that the estimate kzk � x�k2 = O(�k) holds for the entire sequence.This result appears similar to one of Mi�in [15, Theorem 5.4], but the as-sumptions on L(�;��) in that paper are strong. Essentially, they are that L(�;��)satisfy a strong convexity property over some convex set containing the iterateszk, for all k su�ciently large.The following result follows immediately from Theorems 5 and 6.Corollary 1. Suppose that Assumption 2 holds. Then any sequences f�kg andfzkg with the properties that�k # 0; zk ! x�; zk a local min of P (�;�k); (101)will satisfy �k = �(kzk � x�k2): (102)5. DiscussionMotivated by the success of primal-dual interior-point methods on linear pro-gramming problems, a number of researchers recently have described primal-dualmethods for nonlinear programming. In these methods, the Lagrange multipliers� generally are treated as independent variables, rather than being de�ned interms of the primal variables x by a formula such as (19). We mention in par-ticular the work of Forsgren and Gill [9], El Bakry et al. [3], and Gay, Overton,and Wright [11], who use line-search methods, and Conn et al. [6] and Byrd,Gilbert, and Nocedal [5], who describe trust-region methods. Methods for non-linear convex programming are described by Ralph and Wright [21,20], amongothers.Near the solution x�, primal-dual methods gravitate toward points on theprimal-dual central path, which is parametrized by � and de�ned as the set ofpoints (x(�); �(�)) that satis�es the conditionsrf(x) � mXi=1 �irci(x) = 0; (103a)�ici(x) = �; for all i = 1; 2; : : : ;m, (103b)� > 0; c(x) > 0: (103c)When the LICQ and second-order su�cient conditions hold, the Jacobian matrixof the nonlinear equations formed by (103a) and (103b) is nonsingular in a



28 Stephen J. Wright, Dominique Orbanneighborhood of (x�; ��), where �� is the (unique) optimal multiplier. Fiaccoand McCormick use this observation to di�erentiate the equations (103a) and(103b) with respect to �, and thereby prove results about the smoothness of thetrajectory (x(�); �(�)) near (x�; ��).The results of Section 3 above show that the system (103) continues to havea solution in the neighborhood of fx�g � S� when LICQ is replaced by MFCQ.We simply take x(�) to be the vector described in Theorems 1, 2, and 3, andde�ne �(�) by (19). Hence, we have existence and local uniqueness of a solutioneven though the limiting Jacobian of (103a), (103b) is singular, and we �ndthat the primal-dual trajectory approaches the speci�c limit point (x�; ���). Thesmoothness properties of the path under MFCQ are not obvious, however.In the case of no strict complementarity, the (weaker) existence results ofSection 4 can again be used to deduce the existence of solutions to (103) nearfx�g � S�, but we cannot say much else about this case other than that theconvergence rate implied by Lemma 3 is satis�ed.Finally, we comment about the use of Newton's method to minimize P (�;�)approximately for a decreasing sequence of values of �, a scheme known as theNewton/log-barrier approach. Extrapolation can be used to obtain a startingpoint for the Newton iteration after each decrease in �. Superlinear convergenceof this approach is obtained by decreasing �k superlinearly to zero (that is,limk!1 �k+1=�k = 0) while taking no more than a �xed number of Newtonsteps at each value of �k. In the case of LICQ, rapid convergence of this typehas been investigated by Conn, Gould, and Toint [7], Benchakroun, Dussault,and Mansouri [4], Wright and Jarre [29], and Wright [26]. We anticipate thatsimilar results will continue to hold when LICQ is replaced by MFCQ, becausethe central path continues to be smooth and the convergence domain (46) forNewton's method is similar in both cases. A detailed investigation of this claimand an analysis of the case in which strict complementarity fails to hold are leftfor future study.References1. I. Adler and R. D. C. Monteiro. Limiting behavior of the a�ne scaling continuous trajec-tories for linear programming problems. Mathematical Programming, 50:29{51, 1991.2. M. Anitescu. On the rate of convergence of sequential quadratic programming with non-di�erentiable exact penalty function in the presence of constraint degeneracy. PreprintANL/MCS-P760-0699, Argonne National Laboratory, Argonne, Illinois, USA, 1999.3. A.S. El Bakry, R.A. Tapia, T. Tsuchiya, and Y. Zhang. On the formulation and theoryof newton interior point methods for nonlinear programming. Journal of OptimizationTheory and Applications, 89(3):507{541, 1996.4. A. Benchakroun,J.-P. Dussault, and A. Mansouri. A two parametermixed interior-exteriorpenalty algorithm. ZOR - Mathematical Methods of Operations Research, 41:25{55, 1995.5. R. H. Byrd, J. Ch. Gilbert, and J. Nocedal. A trust region method based on interior pointtechniques for nonlinear programming. Technical Report 2896, INRIA, Rocquencourt,France, 1996.6. A. R. Conn, N. I. M. Gould, D. Orban, and Ph. L. Toint. A primal-dual trust-regionalgorithm for minimizing a non-convex function subject to bound and linear equalityconstraints. In preparation, 1999.
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